Home > Uncategorized > Code bureaucracy can reduce the demand for cognitive resources

Code bureaucracy can reduce the demand for cognitive resources

A few weeks ago I discussed why I thought that research code was likely to remain a tangled mess of spaghetti code.

Everybody’s writing, independent of work-place, starts out as a tangled mess of spaghetti code; some people learn to write code in a less cognitively demanding style, and others stick with stream-of-conscious writing.

Why is writing a tangled mess of spaghetti code (sometimes) not cost-effective, and what are the benefits in making a personal investment in learning to write code in another style?

Perhaps the defining characteristic of a tangled mess of spaghetti code is that everything appears to depend on everything else, consequently: working out the impact of a change to some sequence of code requires an understanding of all the other code (to find out what really does depend on what).

When first starting to learn to program, the people who can hold the necessary information on increasing amounts of code in their head are the ones who manage to create running (of sorts) programs; they have the ‘knack’.

The limiting factor for an individual’s software development is the amount of code they can fit in their head, while going about their daily activities. The metric ‘code that can be fitted in a person’s head’ is an easy concept to grasp, but its definition in terms of the cognitive capacity to store, combine and analyse information in long term memory and the episodic memory of earlier work is difficult to pin down. The reason people live a monks existence when single-handedly writing 30-100 KLOC spaghetti programs (the C preprocessor Richard Stallman wrote for gcc is a good example), is that they have to shut out all other calls on their cognitive resources.

Given time, and the opportunity for some trial and error, a newbie programmer who does not shut their non-coding life down can create, say, a 1,000+ LOC program. Things work well enough, what is the problem?

The problems start when the author stops working on the code for long enough for them to forget important dependencies; making changes to the code now causes things to mysteriously stop working. Our not so newbie programmer now has to go through the frustrating and ego-denting experience of reacquainting themselves with how the code fits together.

There are ways of organizing code such that less cognitive resources are needed to work on it, compared to a tangled mess of spaghetti code. Every professional developer has a view on how best to organize code, what they all have in common is a lack of evidence for their performance relative to other possibilities.

Code bureaucracy does not sound like something that anybody would want to add to their program, but it succinctly describes the underlying principle of all the effective organizational techniques for code.

Bureaucracy compartmentalizes code and arranges the compartments into some form of hierarchy. The hoped-for benefit of this bureaucracy is a reduction in the cognitive resources needed to work on the code. Compartmentalization can significantly reduce the amount of a program’s code that a developer needs to keep in their head, when working on some functionality. It is possible for code to be compartmentalized in a way that requires even more cognitive resources to implement some functionality than without the bureaucracy. Figuring out the appropriate bureaucracy is a skill that comes with practice and knowledge of the application domain.

Once a newbie programmer is up and running (i.e., creating programs that work well enough), they often view the code bureaucracy approach as something that does not apply to them (and if they rarely write code, it might not apply to them). Stream of conscious coding works for them, why change?

I have seen people switch to using code bureaucracy for two reasons:

  • peer pressure. They join a group of developers who develop using some form of code bureaucracy, and their boss tells them that this is the way they have to work. In this case there is the added benefit of being able to discuss things with others,
  • multiple experiences of the costs of failure. The costs may come from the failure to scale a program beyond some amount of code, or having to keep investing in learning how previously written programs work.

Code bureaucracy has many layers. At the bottom there is splitting code up into functions/methods, then at the next layer related functions are collected together into files/classes, then the layers become less generally agreed upon (different directories are often involved).

One of the benefits of bureaucracy, from the management perspective, is interchangeability of people. Why would somebody make an investment in code bureaucracy if they were not the one likely to reap the benefit?

A claimed benefit of code bureaucracy is ease of wholesale replacement of one compartment by a new one. My experience, along with the little data I have seen, suggests that major replacement is rare, i.e., this is not a commonly accrued benefit.

Another claimed benefit of code bureaucracy is that it makes programs easier to test. What does ‘easier to test’ mean? I have seen reliable programs built from spaghetti code, and unreliable programs packed with code bureaucracy. A more accurate claim is that it can be unexpectedly costly to test programs built from spaghetti code after they have been changed (because of the greater likelihood of the changes having unexpected consequences). A surprising number of programs built from spaghetti code continue to be used in unmodified form for years, because nobody dare risk the cost of checking that they continue to work as expected after a modification

  1. Nemo
    March 9, 2021 23:07 | #1

    Whence the term “code bureaucracy”? Some companies have required processes to build s/w under “bureaucracy”. I would argue that good processes allow modular replacement (again from the viewpoint of embedded systems subject to regulatory regimes).

  2. March 10, 2021 12:35 | #2

    @Nemo
    There is a variety of bureaucracy involved in writing software, and I think code bureaucracy captures the view programmers have of some of the coding practices they have to follow.

    How often does modular replacement happen in practice? I don’t have much embedded data, but in other domains functionality is removed and the code involved goes with it. Code modules tend not to be replaced with go faster, or use less memory, versions of the same functionality.

  3. Nemo
    March 11, 2021 02:49 | #3

    Interesting… In embedded systems of moderate size (or large size, such as in vehicles), there are always trade-offs of space vs time. My experience is that modules are replaced with those are smaller or faster. How often? The annoying answer is “it depends”. If the replacement requires regulatory reapproval, not as often.

  4. March 11, 2021 14:04 | #4

    @Nemo
    I can see a need with embedded systems to ‘upgrade’ existing code so that more functionality can be added within an existing limited budget of memory space and cpu performance.

    I wonder if developers tweak existing code, or come up with a whole new way of doing things. I guess tweaking existing code is likely to raise fewer obstacles with the regulator?

    Software in the embedded market is woefully under researched.

  5. Nemo
    March 11, 2021 14:43 | #5

    Developers will do both — I have no statistics on what dominates but I recall mostly the latter. You are correct in your guess. Whenever any change is made, full documentation must be submitted but minor changes are easier to explain.

  1. No trackbacks yet.